NO2 Detection Using Microcantilever Based Potentiometry

نویسندگان

  • Muhammad Qazi
  • Goutam Koley
چکیده

A highly sensitive and novel sensor platform for gases and volatile chemicals using microcantilever based potentiometry is reported. A resonant cantilever is used to detect the changes in surface work functions of functionalized substrates caused by adsorption of target gas molecules. Surface work function (SWF) changes were measured for different functionalization layers made of transition metal oxide thin films with the flow of NO₂. The rate of change in SWF for In₂O₃ and SnO₂ were found to be ~80 and ~100 μV/sec, respectively, for 70 ppm NO₂. A sensitivity of 64 μV/sec for SWF change was also found for 70 ppm NO₂ concentration for isolated clusters of ZnO nanowires, indicating that this technique is applicable even for nano-clusters of sensing materials where amperometric detection is impossible due to material discontinuity. NO₂ detection as low as 400 ppb was possible using highly insulating In₂O₃ and SnO₂ thin films (resistivity > 1 TΩ/⎕). Two different forms of nano scale graphite were compared with the transition oxide based functionalization layer for sensing sub-ppm NO₂ sensing. It was observed that nanostructured graphite (NG) shows much higher sensitivity and lower response time than transition metal oxides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-cantilevered MEMS Biosensor for Detection of Malaria Protozoan Parasites

In this paper, the presented work aims to provide a designed model based on Finite element method for detection of Malaria protozoan parasites. Micro-cantilevers are next generation highly efficient biosensors for detection and prevention of any disease. Here, an E-shaped model for micro cantilevered biosensor is designed using COMSOL Multiphysics specifically for detection of Malaria. Microcan...

متن کامل

Analysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors

The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin...

متن کامل

Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays

Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch(®)) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selec...

متن کامل

Detection of femtomolar concentrations of HF Using an SiO(2) microcantilever.

Femtomolar concentrations of hydrogen fluoride, a decomposition component of nerve agents, were detected using a SiO(2) microcantilever. The microcantilever underwent bending due to the reaction of HF with SiO(2). The microcantilever deflection increased as the concentration of HF increased. Other acids, such as HCl, had no effect on the deflection of the cantilever. The mechanism of reaction-i...

متن کامل

Rapid discrimination of DNA strands using an opto-calorimetric microcantilever sensor.

A rapid technique for quantitative detection and discrimination of DNA strands without using immobilized probe molecules is demonstrated using an opto-calorimetric, self-powered sensor based on a Pb(Zr(0.52)Ti(0.48))O3 (PZT) microcantilever. Microcalorimetric infrared (IR) spectroscopy provides excellent chemical selectivity based on the unique molecular vibrational characteristics of each nucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008